计算机科学与技术学习心得 撰文 曾毅
计算机科学与技术这一门科学深深的吸引着我们这些同学们,上计算机系已经有近三年了,自己也做了一些思考,原先不管是国内还是国外都喜欢把这个系分为计算机软件理论、计算机系统、计算机技术与应用。后来又合到一起,变成了现在的计算机科学与技术。
今天我想专门谈一谈计算机科学,并将重点放在计算理论上。 在我大一时无意中找到了南京大学网友sir的帖子"胡侃(理论)计算机学习",这个帖子对我大学学习起到了至关重要的指导作用,我在这篇文章成文的时候正是基于sir的文章做得必要的补充和修改,并得到了sir的 支持。再有就是每次和本系司徒彦南兄的交谈,都能从中学到很多东西,在这份材料中也有很多体现。这份材料是我原来给学弟学妹们入学教育的讲稿之一,原有基 础上改进了其中我认为不太合适的理论,修正了一些观点,在推荐教材方面结合我的学习情况有了较大改变。值得一提的是增加了一些计算机理论的内容,计算机技 术的内容结合我国的教学情况和我们学习的实际情况进行了重写。这里所作的工作也只是将各位学长和同学们的学习体会以及我在学习计算机科学时的所思所想汇总 在一起写了下来,很不成熟。目的就是希望能够给一些刚入学或者是学习计算机科学还没有入门的同学以一些建议。不期能够起到多大的作用,但求能为同学们的学 习计算机科学与技术带来微薄的帮助。还是那句话,计算机科学博大精深,我只是个初学者,不当之处希望大家批评指正。 1、计算机理论的一个核心问题--从数学谈起: [1]高等数学Vs数学分析 记得当年大一入学,每周四课时高等数学。我国计算机科学系里的传统是培养做学术研究,尤其是理论研究的人(方向不见得有多大的问题,但是做得不是那么尽如人意)。 而计算机的理论研究,如网络安全学,图形图像学,视频音频处理,哪个方向都与数学有着很大的关系。这里我还想阐明我的一个观点:我们都知道,数学是从实际 生活当中抽象出来的理论,人们之所以要将实际抽象成理论,目的就在于想用抽象出来的理论去更好的指导实践,有些数学研究工作者喜欢用一些现存的理论知识去 推导若干条推论,殊不知其一:问题考虑不全很可能是个错误的推论,其二:他的推论在现实生活中找不到原型,不能指导实践。严格的说,我并不是一个理想主义 者,政治课上学的理论联系实际一直是指导我学习科学文化知识的航标 (至少我认为搞计算机科学与技术的应当本着这个方向)。 其实我们计算机系学数学仅学习高等数学是不够的 (典型的工科院校一般都开的是高等数学),我们应该像数学系一样学一下数学分析(清华计算机系开的好像就是数学分析,我们学校计算机学院开的也是,不过老师讲起来好像还是按照高等数学讲), 数学分析这门科学,咱们学计算机的人对它有很复杂的感情。在于它是偏向于证明型的数学课程,这对我们培养良好的分析能力和推理能力极有帮助。我的软件工程 学导师北工大数理学院的王仪华先生就曾经教导过我们,数学系的学生到软件企业中大多作软件设计与分析工作,而计算机系的学生做程序员的居多,原因就在于数 学系的学生分析推理能力,从所受训练的角度上要远远在我们平均水平之上。当年出现的怪现象是:计算机系学生的高中数学基础在全校数一数二(希望没有冒犯其它系的同学),教学课时数也仅次于数学系,但学完之后的效果却不尽如人意。难道都是学生不努力吗,我看未见得,方向错了也说不一定,其中原因何在,发人深思。
那倒不如现用现查,何必费事记呢?再不然直接用Mathematica或是Matlab好了。 退一万步讲,即使是学高等数学我想大家看看华罗庚先生的《高等数学导论》也是比一般的教材好得多。华罗庚在数学上的造诣不用我去多说,但是他这光辉的一生做得我认为对我们来说,最重要的几件事情: 首 先是它筹建了中国科学院计算技术研究所,这是我们国家计算机科学的摇篮。在有就是他把很多的高等数学理论都交给了做工业生产的技术人员,推动了中国工业的 进步。第三件就是他一生写过很多书,但是对高校师生价值更大的就是他在病期间在病床上和他的爱徒王元写了《高等数学引论》(王元与其说是他的爱徒不如说是他的同事,是中科院数学所的老一辈研究员,对歌德巴赫猜想的贡献全世界仅次于陈景润)这 书在我们的图书馆里居然找得到,说实话,当时那个书上已经长了虫子,别人走到那里都会闪开,但我却格外感兴趣,上下两册看了个遍,我的最大收获并不在于理 论的阐述,而是在于他的理论完全的实例化,在生活中去找模型。这也是我为什么比较喜欢具体数学的原因,正如我在上文中提到的,理论脱离了实践就失去了它存 在的意义。正因为理论是从实践当中抽象出来的,所以理论的研究才能够更好的指导实践,不用于指导实践的理论可以说是毫无价值的。 我在系里最爱做的事情就是给学弟学妹们推荐参考书。没有别的想法,只是希望他们少走弯路。中文的数学分析书,一般都认为以北大张筑生老师的"数学分析新讲"为最好。张筑生先生一生写的书并不太多,但是只要是写出来的每一本都是本领域内的杰作,这本当然更显突出些。这种老书看起来不仅是在传授你知识,而是在让你体会科学的方法与对事物的认识方法。万一你的数学实在太好,那就去看菲赫金哥尔茨?quot;微积分学教程"好了--但我认为没什么必要,毕竟你不想转到数学系去。吉米多维奇的"数学分析习题集"也基本上是计算型的书籍。书的名气很大,倒不见得适合我们,还是那句话,重要的是数学思想的建立,生活在信息社会里我们求的是高效,计算这玩意还是留给计算机吧。不过现在多用的似乎是复旦大学的《数学分析》,高等教育出版社的,也是很好的教材。
正如上面所论述的,计算机系的学生学习高等数学:知其然更要知其所以然。你学习的目的应该是:将抽象的理论再应用于实践,不但要掌握题目的解题方法,更要 掌握解题思想,对于定理的学习:不是简单的应用,而是掌握证明过程即掌握定理的由来,训练自己的推理能力。只有这样才达到了学习这门科学的目的,同时也缩 小了我们与数学系的同学之间思维上的差距。 [2]计算数学基础
我们不一定要这么做,但应该更加强调离散概率是没有疑问的。这个工作我看还是尽早的做为好。 计算方法学(有些学校也称为数学分析学)是最后一门由数理学院给我们开的课。一般学生对这门课的重视程度有限,以为没什么用。不就是照套公式嘛!其实,做图形图像可离不开它,密码学搞深了也离不开它。而且,在很多科学工程中的应用计算,都以数值的为主。
我个人认为,计算机系的学生一定要认识清楚我们计算机系的学生为什么要学这门课,我是很偏向于学好理论后用计算机实现的,最好使用C语言或C++编程实现。向这个方向努力的书籍还是挺多的,这里推荐大家高等教育出版社(CHEP)和施普林格出版社(Springer)联合出版的《计算方法(Computational Methods)》,华中理工大学数学系写的 (现华中科技大学),这方面华科大做的工作在国内应算是比较多的,而个人认为以这本最好,至少程序设计方面涉及了:任意数学函数的求值,方程求根,线性方程组求解,插值方法,数值积分,场微分方程数值求解。李庆扬先生的那本则理论性过强,与实际应用结合得不太紧,可能比较适合纯搞理论的。 [3]也谈离散数学 每个学校本系里都会开一门离散数学,涉及集合论,图论,和抽象代数,数理逻辑。不过,这么多内容挤在离散数学一门课里,是否时间太紧了点?
数理逻辑,中科院软件所陆钟万教授的《面向计算机科学的数理逻辑》就不错。现在可以找到陆钟万教授的讲课录像,http://www.cas.ac.cn/html/Dir/2001/11/06/3391.htm自己去看看吧。
我的老师说,图论里面随便找一块东西就可以写篇论文。大家可以体会里面内容之深广了吧!国内的图论书中,王树禾老师的"图论及其算法"非常成功(顺便推荐大家王先生的"数学思想史",个人认为了解科学史会对我们的学习和研究起到很大的推动作用)。一方面,其内容在国内教材里算非常全面的。另一方面,其对算法的强调非常适合计算机系(本来就是科大计算机系教材)。
离散数学方面我们北京工业大学有个世界级的专家,叫邵学才,复旦大学概率论毕业的,教过高等数学,线性代数,概率论,最后转向离散数学,出版著作无数, 论文集新加坡有一本,堪称经典,大家想学离散数学的真谛不妨找来看看。这老师的课我专门去听过,极为经典。不过你要从他的不经意的话中去挖掘精髓。在同他 的交谈当中我又深刻地发现一个问题,虽说邵先生写书无数,但依他自己的说法每本都差不多,我实在觉得诧异,他说主要是有大纲的限制,不便多写。这就难怪 了,很少听说国外写书还要依据个什么大纲(就算有,内容也宽泛的多),不敢越雷池半步,这样不是看谁的都一样了。外版的书好就好在这里,最新的科技成果里面都有论述,别的先不说,至少"紧跟时代的理论知识"。 原先离散数学和数据结构归在一起成为离散数学结构,后来由于数据结构的内容比较多,分出来了,不过最近国外好像有些大学又把它们合并到了一起,道理当然不用说,可能还是考虑到交叉的部分比较多。比较经典的书我看过得应算是《Discrete Mathematical Structures》了,清华大学出版社有个影印版的。 [4]续谈其他的一些计算数学 组合数学我看的第一本好像是北大捐给我们学院的,一本外版书。感觉没有太适合的国产书。还是读Graham和Knuth等人合著的经典"具体数学"吧,西安电子科技大学出版社有翻译版。 《组合数学》,《空间解析几何》还有那本《拓扑学》,看这三本书的时候是极其费事的,原因有几点,首先是这三本书无一例外,都是用繁体字写的,第二就是 书真得实在是太脏了,我在图书馆的座位上看,同学们都离我做得很远。我十分不自然,不愿意影响同学,但是学校不让向外借这种书(呵呵,说起这是也挺有意思,别人都不看这种书,只有我在看,老师就特别的关注我,后来我和他讲了这些书的价值,他居然把他们当作是震馆之宝,老师都不许借,不过后来他们看我真得很喜欢看,就把书借给了我,当然用的是馆长的名义借出去的。)不 过收获是非常大的,再后来学习计算机理论时里面的很多东西都是常会用到的。当然如果你没看过这些书绝对理解不到那个层次。拿拓扑学来说,我们学校似乎是美 开设这门课程,但是这门课程的重要性是显而易见的,没有想到的是在那本书的很多页中都夹着一些读书笔记,而那个笔记的作者及有些造诣,有些想法可以用到现 代网络设计当中。
计算机科学理论的根本,在于算法。现在很多系里给本科生开设算法设计与分析,确实非常正确。环顾西方世界,大约没有一个三流以上计算机系不把算法作为必修的。
深一点的就是大家作为常识都知道的TAOCP了。即是《The Art of Computer Programming》3册内容全世界都能看下来的本身就不多,Gates曾经说过"若是你能把这书上面的东西都看懂,请把你的简历发给我一份"我的学长司徒彦南兄就曾千里迢迢从美国托人买这书回来,别的先不说,可见这书的在我们计算机科学与技术系中的分量。
北科大的班晓娟博士也曾经说过,编译的技术已相当成熟。
所 以建议有兴趣的同学去读英文书,中文原著的教材中比较经典的是清华大学出版社出版的《形式语言与自动机理论》,作者是北京工业大学的蒋宗礼教授。中文翻译 版本一本《自动机理论、语言和计算导论》不过国内似乎没引进这方面的教材。可以去互动出版网上看一看。入门以后,把形式语言与自动机中定义的模型,和数理 逻辑中用递归函数定义的模型比较一番,可以说非常有趣。现在才知道,什么叫"宫室之美,百官之富"!
原来在东方大学城图书馆中曾经看过一本七十年代的译本(书皮都没了,可我就爱关注这种书),大概就叫《计算机数学》。那本书若是放在当时来讲决是一本好书,但现在看来,涵盖的范围还算广,深度则差了许多,不过推荐大一的学生倒可以看一看,至少可以使你的计算数学入入门,也就是说至少可以搞清数学到底在计算机科学什么地方使用。
2、理论与实际的结合--计算机科学技术研究的范畴与学习方法 前 面主要是从数学角度来看的。从计算机角度来看,理论计算机科学目前主要的研究领域包括:可计算性理论,算法设计与复杂性分析,密码学与信息安全,分布式计 算理论,并行计算理论,网络理论,生物信息计算,计算几何学,程序语言理论等等。这些领域互相交叉,而且新的课题在不断提出,所以很难理出一个头绪来。想 搞搞这方面的工作,推荐看中国计算机学会的一系列书籍,至少代表了我国的权威。下面随便举一些例子。
密码学方面值得推荐的有一本《应用密码学》还有就是平时多看看年会的论文集,感觉这种材料实用性比较强,会提高很快。
如果计算机只有理论,那么它不过是数学的一个分支,而不成为一门独立的科学。事实上,在理论之外,计算机科学还有更广阔的天空。 一个一流计算机系的优秀学生决不该仅仅是一个编程高手,但他一定首先是一个编程高手。我上大学的时候,第一门专业课是C语言程序设计,念计算机的人从某种角度讲相当一部分人是靠写程序吃饭的。在我们北京工业大学计算机系里一直有这样的争论(时至今日CSDN上也有),关于第一程序设计语言该用哪一种。我个人认为,用哪种语言属于末节,关键在养成良好的编程习惯。当年老师对我们说,打好基础后学一门新语言只要一个星期。现在我觉得根本不用一个星期,前提是先把基础打好。不要再犹豫了,学了再说,等你抉择好了,别人已经会了几门语言了。 [1]专谈计算机系统的学习
组成原理推荐《计算机组成与结构》清华大学王爱英教授写的。汇编语言大家拿8086/8088入个门,之后一定要学80x86汇编语言。实用价值大,不落后,结构又好,写写高效病毒,高级语言里嵌一点汇编,进行底层开发,总也离不开他,推荐清华大学沈美明的《IBM-PC汇 编语言程序设计》。有些人说不想了解计算机体系结构,也不想制造计算机,所以诸如计算机原理,汇编语言,接口之类的课觉得没必要学,这样合理吗?显然不合 理,这些东西迟早得掌握,肯定得接触,而且,这是计算机专业与其他专业学生相比的少有的几项优势。做项目的时候,了解这些是非常重要的,不可能说,仅仅为 了技术而技术,只懂技术的人最多做一个编码工人,而永远不可能全面地了解整个系统的设计,而编码工人是越老越不值钱。关于组成原理还有个讲授的问题,在我 学这门课程时老师讲授时把CPU工作原理誉微程序设计这一块略掉了,理由是我们国家搞CPU技术不如别的国家,搞了这么长时间好不容易出了个龙芯比Intel的还差个十万八千里,所以建议我们不要学了。我看这在各校也未见得不是个问题吧!若真是如他所说,那中国的计算机科学哪个方向都可以停了,软硬件,应用,有几项搞得过美国,搞不过别人就不搞了,那我们坐在这里干什么?教学的观念需要转变的。我们学校现在有一个学弟就专攻CPU设计,平时交流不少,发现他能够将软件的设计思想应用到芯片设计上,我看真的是不错的,比起那些望而生畏的恐怕要强上百倍。
(我校电子系在用)。有兴趣也可以参考童诗白的书。 数字电路比模拟电路要好懂得多。推荐大家看一看北京工业大学刘英娴教授写的《数字逻辑》。业绩人士都说这本书很有参考价值 (机械工业出版社)。原因很明了,实用价值高,能听听她讲授的课程更是有一种"享受科学"的感觉。清华大学阎石的书也算一本好教材,遗憾的一点是集成电路讲少了些。真有兴趣,看一看大规模数字系统设计吧(北航那本用的还比较多)。
[2]一些其他的专业课程
这两部都可以算经典。我们当时理论方面学习采用的是清华大学出版社《操作系统》,张尧学教授写的那本。可以说理论涉及的比较全,在有就是他的实验指导书,操作系统这门学科同程序设计结合得很紧密,不自己试着做些什么恐怕很难搞通。我想作为实践类的参考首推的是这本:《4.4BSD操作系统设计与实现》作为开源文化很重要的一个分支的BSD操作系统家族做得非常出色,其中现在若干出色的分支系统(例如FreeBSD,NetBSD,OpenBSD,DragonflyBSD)都与4.4BSD有着难解的渊源。而4.4BSD的开发者亲自撰写的这本理论设计与实现便是一本绝佳的参考。另外在有一些辅助材料的基础上研究*nix的源代码也是深入操作系统设计与实现的一条绝佳之路。(感谢CSDN网友ffgg的建议,我将《Windows操作系统原理》这本书去掉,现在看来这本书的确不能算是一个十分优秀的作品)
推荐教材:Kenneth C.Louden写的《Compiler Construction Principles and Practice》即是《编译原理及实践》(机械工业出版社的译本)
另外推荐大家学完软件工程学后再翻过来看看数据库技术,又会是一番新感觉。至少对一些基本概念与描述方法会有很深的体会,比如说数据字典,E-R图之类的。推荐教材:Abraham Silberschatz等著的 "Database System Concepts".作为知识的完整性,还推荐大家看一看机械工业出版社的《数据仓库》译本。
http://www.ietf.org/rfc.html里可以按编号下载RFC文档。从IP的读起。等到能掌握10种左右常用协议,就没有几个人敢小看你了。再做的工作我看放在网络设计上就比较好了。 数据结构的重要性就不言而喻了,学完数据结构你会对你的编程思想进行一番革命性的洗礼,会对如何建立一个合理高效的算法有一个清楚的认识。对于算法的建立我想大家应当注意以下几点: 当遇到一个算法问题时,首先要知道自己以前有没有处理过这种问题.如果见过,那么你一般会顺利地做出来;如果没见过,那么考虑以下问题: 1. 问题是否是建立在某种已知的熟悉的数据结构(例如,二叉树)上?如果不是,则要自己设计数据结构。 2. 问题所要求编写的算法属于以下哪种类型?(建立数据结构,修改数据结构,遍历,查找,排序...) 3. 分析问题所要求编写的算法的数学性质.是否具备递归特征?(对于递归程序设计,只要设计出合理的参数表以及递归结束的条件,则基本上大功告成.) 4. 继续分析问题的数学本质.根据你以前的编程经验,设想一种可能是可行的解决办法,并证明这种解决办法的正确性.如果题目对算法有时空方面的要求,证明你的设想满足其要求.一般的,时间效率和空间效率难以兼得.有时必须通过建立辅助存储的方法来节省时间. 5. 通过一段时间的分析,你对解决这个问题已经有了自己的一些思路.或者说,你已经可以用自然语言把你的算法简单描述出来.继续验证其正确性,努力发现其中的错误并找出解决办法.在必要的时候(发现了无法解决的矛盾),推翻自己的思路,从头开始构思. 6. 确认你的思路可行以后,开始编写程序.在编写代码的过程中,尽可能把各种问题考虑得详细,周密.程序应该具有良好的结构,并且在关键的地方配有注释. 7. 举一个例子,然后在纸上用笔执行你的程序,进一步验证其正确性.当遇到与你的设想不符的情况时,分析问题产生的原因是编程方面的问题还是算法思想本身有问题. 8. 如果程序通过了上述正确性验证,那么在将其进一步优化或简化。 9. 撰写思路分析,注释. 对于具体的算法思路,只能靠你自己通过自己的知识和经验来加以获得,没有什么特定的规律(否则程序员全部可以下岗了,用机器自动生成代码就可以了).要有丰富的想象力,就是说当一条路走不通时,不要钻牛角尖,要敢于推翻自己的想法.我也只不过是初学者,说出上面的一些经验,仅供大家参考和讨论。 关于人工智能,我觉得的也是非常值得大家仔细研究的,虽然不能算是刚刚兴起的学科了,但是绝对是非常有发展前途的一门学科。我国人工智能创始人之一,北京科技大学涂序彦教授(这老先生是我的导师李小坚博士的导师)对人工智能这样定义:人工智能是模仿、延伸和扩展人与自然的智能的技术科学。在美国人工智能官方教育网站上对人工智能作了如下定义:Artificial Intelligence, or AI for short, is a combination of computer science, physiology, and philosophy. AI is a broad topic, consisting of different fields, from machine vision to expert systems. The element that the fields of AI have in common is the creation of machines that can "think". 这门学科研究的问题大概说有: (1)符号主义: 符号计算与程序设计基础,知识表达方法 :知识与思维,产生式规则,语义网络,一阶谓词逻辑问题求解方法:搜索策略,启发式搜寻,搜寻算法,问题规约方法,谓词演算:归结原理,归结过程专家系统:建立专家系统的方法及工具 (2)联接主义(神经网络学派):1988年美国权威机构指出:数据库,网络发展呈直线上升,神经网络可能是解决人工智能的唯一途径。关于神经网络学派,现在很多还是在发展阶段。 我想对于人工智能的学习,大家一定不要像学数学似的及一些现成的结论,要学会分析问题,最好能利用程序设计实现,这里推荐给大家ACM最佳博士论文奖获得者涂晓媛博士的著作《人工鱼-计算机动画的人工生命方法》(清华大学出版社)。搞人工生命的同学不会不知道国际知名的涂氏父女吧。关于人工智能的书当然首选《Artificial Intelligence A New Synthesis》Nils J.Nilsson.鼻祖嘛! 关 于网络安全我也想在这里说两句,随着计算机技术的发展,整个社会的信息化水平突飞猛进,计算机网络技术日新月异,网络成了当即社会各个工作领域不可缺少的 组成部分,只要有网络存在,网络安全问题就是一个必须解决好的问题,学习网络安全不是简简单单的收集一些黑客工具黑一黑别人的网站,而是要学习他的数学原 理,实现原理,搞清底层工作机制,这样才能解决大部分的现有问题和新出现的安全问题。 总的来说信息安全学的研究还是非常深奥的,这方面体会比较深的要算是在最近的微软杯程序设计大赛中利用.NET平台开发的那个项目My E-business Fairy.NET过程中了。 [3]闲聊软件工程 关 于计算机科学的一些边缘科学我想谈一谈软件工程技术,对于一个企业,推出软件是不是就是几个程序员坐在一起,你写一段程序,我写一段程序呢?显然不是。软 件工程是典型的计算机科学和数学,管理科学,心理学,社会学等学科的综合。它使我们这些搞理论和技术的人进入了一个社会。你所要考虑的不仅仅是程序的优 劣,更应该考虑程序与软件的区别,软件与软件产品的区别,软件软件产品的市场前景,如何去更好的与人交流。这方面我还在学习阶段,以后这方面再写文章吧, 先推荐给大家几本书:畅销20年不衰的《人月神话》(清华大学中文版,中国电力出版社影印版),《软件工程-实践者研究的方法》(机械工业出版社译本),《人件》(据说每一位微软公司的部门经理都读过这本书,推荐老总们和想当老总的同学都看看,了解一下什么是软件企业中的人)以及微软公司的《软件开发的科学与艺术》和《软件企业的管理与文化》(研究软件企业的制胜之道当然要研究微软的成功经验了!) 看完上面的书,结合自己做的一些团队项目,我的一些比较深的体会有这么几点 1.How important a plan is for a project development. 2.How to communicate with your team members in a more effective way. 3.How to solve unexpected situations. 4.The importance of unification. 5.The importance of doing what you should do. 6.The importance of designing before programming. 7.The importance of management. 8.The importance of thinking what your teammates think. 在软件开发过程中我们应当具有以下能力: 1.Like it if you would like to do it. We believe that your attitude toward your work will definitely makes great effect on the project. 2.The spirit of group working. Take myself as an example. I am just a part of the team, just a little part. You must make it clear that you are just a member of the team, but your effort will change your project a lot. 3.Passion With passion, you can do your job in a more effective way. 4.The ability of solving unexpected problems. 5.Learning New things in a very short time It is the basic requirement for we computer major to learn new technology. 6.Creativity The tools are changing. As for us, what's more important is to use these new tools and technology to enable people and businesses throughout the world to realize their full potential. 7.The ability to do your work independently. Every member has his own business. In a team, your work cannot be replaced by others' so you must do your business well in order to assure the project development process. 团队开发当中的一些具体精神应当有: <1> Success and Failure is not one person's effect. Your team's success is not the contribution of a single person. Success contributes to the whole team. If your project failed, it also is not just because of one person's poor work. It is also your failure. <2> Learn from each other. Every person has his own specialty. Even Bill Gates cannot know all the things about software development. We often learn from each other and gains a lot. The old saying goes like this: There must be one out of three who can be your teacher. In our team we say: Every person is your teacher. <3> Help those who have problems. Use the group working spirit to overcome all the difficulties. There is no need to explain it. As the old saying: Two heads are better than one. We always find it difficult to solve all the problems just by oneself. <4> Praise them who have got some improvement. In our team, I always praise the members when they have finished something or just solved one problem, and they think that it is interesting and gains a lot. Because they can see their efforts. <5> Say something if needed. 这个是一次软件大赛当中的体会,和大家也做个交流,不过不能再说了,软件工程学说起来写本2000页的书一点也不多,恕我才疏学浅,不再做过多论述了。 [4]谈谈学习态度的问题 关于计算机技术的学习我想是这样的:学校开设的任何一门科学都有其滞后性,不要总认为自己掌握的某门技术就已经是天下无敌手了,虽然现在Java,VB,C,C++用的都很多,怎能保证没有被淘汰的一天,我想.NET平台的诞生和X#语言的初见端倪完全可以说明问题。换言之,在我们掌握一门新技术的同时就又有更新的技术产生,身为当代的大学生应当有紧跟科学发展的素质。举个例子,就像有些同学总说,我做网页设计就喜欢直接写html,不愿意用什么Frontpage,Dreamweaver。能用语言写网页固然很好,但有高效的手段你为什么不使呢?仅仅是为了显示自己的水平高,unique? 我看真正水平高的是能够以最快的速度接受新事物的人。高级程序设计语言的发展日新月异,今后的程序设计就像人们在说话一样,我想大家从xml中应是有所体会了。难道我们真就写个什么都要用汇编,以显示自己的水平高,真是这样倒不如直接用机器语言写算了。反过来说,想要以最快的速度接受并利用新技术关键还是在于你对计算机科学地把握程度。当然有一点我们必须指出,就是对于新技术要辩证得看,不能盲从。 计算机技术牵扯的内容更为广泛些,一项一项说恐怕没个一年半载也说不清。我只想提醒大家的还是那句话,技术与科学是不能分家的,学好了科学同时搞技术,这才是上上策。犹如英语,原先人们与老外交流必须要个翻译,现在满马路的人都会说英语。就连21世 纪英语演讲比赛的冠军都轮不到英语系的学生了。计算机也是一样的,我们必须面对的一个现实就是:计算机真就只是一个工具,如果不具备其它方面的素养,计算 机系的学生虽然不能说找不到工作,不过总有一天当其他专业性人才掌握了计算机技术后将比我们出色许多。原因就在于计算机解决的大都是实际问题,实际问题的 知识却是我们少有的。单一的计算机技术没有立足之地。 我 想是时候指出:学习每一个课程之前,都要先搞清这一课程的学习目的。这一学科的应用领域。据我自身所了解到的同龄同学和低年级的同学的学习状况:他们之中 很少有人知道学一个学科的学习目的,期末考试结束了也不知道学这科做什么用。这就失去了读计算机科学的意义。当然这与现存的教育思想不能说一点关系都没 有。 总 的来说,从教育角度来讲,国内高校的课程安排不是很合理,强调理论,又不愿意在理论上深入教育,无力接受新技术,想避开新技术又无法避得一干二净。我觉得 关键问题就是国内的高校难于突破现状,条条框框限制着怎么求发展。我们虽然认识得到国外教育的优越性,但为什么迟迟不能采取行动?哪怕是去粗取精的取那么 一点点。我们需要改变。从我们自身角度来讲,多数人4年下来既没有学习计算机科学的学术水平,也没有学习计算机技术的那种韧劲。在我刚上大一时,我的计算机科学入门导师,淮北煤炭师范学院王爱平教授曾经对我说过这样一番话:"当你选择了计算机这一门科学,就意味着你踏上了一条不归路,就意味着你一生都要为之奋斗……你的身后是悬崖,只有向前走,不能往后退。" 有 些同学说按照这样学习学的东西太多,有的未见得有用,我想打个形象的比方:学校学出来的人都是一个球体,方方面面的知识都应具备。可是社会上需要球体的地 方很少,反而需要的是砖和瓦,即精通某一行的人才。但是对于同等体积的物体,用球体来改造是最方便最省事的。学校的学生很多,为了能够使更多的学生来适应 这个社会,学校也就不得以把所有的学生都打造成一个球体,然后让社会对这些学生进行再加工,成为真正能够有用的人才。即使你非常清楚自己的将来要干什么, 并且非常下定决心要走自己的路,这一步你也必须走,世界是在不断变化的,你不能预料未来。想清楚,努力去干吧! 计算机科学博大精深,我只是个初学者。前面的路还长,计算机科学需要我们为之奋斗......学习计算机科学需要韧性,更需要创新,需要激情。深刻学习理论知识,勇于接受新技术的挑战,这才是我们这一代人应具有的素质。最后送大家一句话"Wake up every day with a feeling of passion for the difference technology will make in people's life!"。 |